
PROBLEMS IN ALGEBRAIC SURFACES

1. Problem Set 1: Curves on Surfaces, Due July 3rd

References: Beauville section 1, Hartshorne Chapter 5, section 1.

1.1. Theorems. The main theorems (we talked about in the lecture) that you may need
include the adjunction formula and the Bezout theorem.

Theorem 1.1. (adjunction formula) Let X be a smooth projective surface, and C a curve
in X. Let KX be the canonical divisor of X then

2gpCq ´ 2 “ C ¨ C ` KX ¨ C,

where gpCq is the genus of the curve C (should be interpreted as arithmetic genus when C
is singular).

Theorem 1.2. (Bezout theorem) Let C1 and C2 be two curves in P2 of degree d1 and d2
respectively, then C1 ¨ C2 “ d1d2.

1.2. Curves on P2.

Problem 1.3. Let rx : y : zs be the coordinate on P2. Find the conic (a degree two homo-
geneous polynomial in x, y, z) passing through the points r1 : 0 : 0s, r0 : 1 : 0s, r0 : 0 : 1s,
r1 : 1 : 1s, and ra : b : cs.

Problem 1.4. Determine for which a, b, c the conic is reducible (i.e., become union of two
lines).

Problem 1.5. Deduce from adjunction formula the degree-genus formula on P2: Any smooth
curve C of P2 of degree d has genus pd ´ 1qpd ´ 2q{2.

1.3. Curves on quadric surface.

Problem 1.6. Show that the Segre embedding

P1
ˆ P1

Ñ P3

ra : bs, rc : ds ÞÑ rac : ad : bc : bds

defines an isomorphism from P1 ˆ P1 to the quadric surface Q in P3 defined by xw “ yz.

Problem 1.7. Let C be a smooth curve in the quadric surface P1 ˆ P1 of type pa, bq, where
a, b ě 0 are integers.

(1) Show that gpCq “ ab ´ a ´ b ` 1.
(2) Find the genus of the curve of type p1, 0q, p0, 1q, p1, 1q, and p2, 2q.
(3) If we use the Segre embedding P1 ˆ P1 ãÑ P3, how are the curves above embedded in

P3? (Remark: a (2,2) curve is usually called "Clifford torus".)

Problem 1.8. Let C1,2 be the curve of type p1, 2q on the quadric surface.
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(1) Find the genus of C1,2. Explain how is the curve of type p1, 2q embedded in P3. (There
is a common name for this curve.)

(2) Find the normal bundle of C1,2 in P3. (Hint: first think about the same question for
(2,2) curve.)

1.4. Intersections of curves in P2.
Problem 1.9. Construct two (affine) smooth conics passing through p0, 0q with intersection
multiplicity 1, 2, 3, 4, respectively.
Problem 1.10. Find all the intersections and the multiplicities of the two affine plane curves
(working over C)

y2 “ xpx ´ 1qpx ` 1q, and y2 ` x2
´ x “ 0.

Problem 1.11. (challenge problem)
Find intersection multiplicity for 3

4
y2 ` 3xy ` y ´ x3 “ 0 and y2 ` 3xy “ x3 at p0, 0q.

1.5. arithmetic genus.
Problem 1.12. Find the arithmetic genus of the curve I3, which is the union of three rational
curves, and form a loop.

(1)

Figure 1. I3

Problem 1.13. Find the arithmetic genus of the curve I˚
0 , which is a nonreduced curve with

five irreducible components, and the horizontal one has multiplicity two.

(2)

Figure 2. I˚
0

Remark: The notations I3 and I˚
0 come from Kodaira, and they are all singular fibers of

elliptic surfaces (see Wikipedia page here). So, if you know the arithmetic genus is preserved
in a flat family, you can immediately solve the two problems above. (But please don’t use
that as a proof here.)
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2. Problem Set 2: Blow-up on Surfaces (due July 18)

2.1. Intoduction. In this section, we study blowup of a surface. The blow-up C2 at the
point p0, 0q has the equation px, y;α : βq P C ˆ P1 satisfying

det

„

x y
α β

ȷ

“ 0.

In affine chart α “ 1, the equation is y “ xβ, and in the affine chart β “ 1, the equation
is given by x “ yα. In the common intersection α, β ‰ 0, the two equations agree via
α “ 1

β
. The exceptional divisor E is the set of all p0, 0;α : βq, which is a copy of P1. E has

self-intersection ´1.
Blowup is introduced to resolve the singularities of a curve. On the other hand, one

can keep track of the intersection numbers, Picard group, etc, under blowup. One refer to
Beauville section II, and Hartshorne Chapter 1, section 4, Chapter 5, section 5 for details.
Below are the theorems you need to solve the problems.

Theorem 2.1. (Blow up exists) Let S be a surface and p P S a point. Then there exists a
surface Ŝ and a morphism ε : Ŝ Ñ S which are unique up to isomorphism, such that

(1) the restriction of ε to ε´1pS ´ tpuq is an isomorphism onto S ´ tpu;
(2) ε´1ppq “ E is isomorphic to P1 and called the exceptional divisor.

Now consider an irreducible curve C on S that passes through p with multiplicity m. The
closure of ε´1pC´tpuq in Ŝ is an irreducible curve Ĉ on Ŝ, which we call the strict transform
of C.

Lemma 2.2. ε˚C “ Ĉ ` mE.

Theorem 2.3. Let ε : Ŝ Ñ S be the blowup of a smooth surface at one point p. Then
(1) Let D and D1 be divisors on S, then ε˚D.ε˚D1 “ D.D1, pε˚Dq.E “ 0 and E2 “ ´1.
(2) There is an isomorphism PicpSq ‘ Z – PicpŜq, defined by pD,nq ÞÑ ε˚D ` nE.
(3) KŜ “ ε˚KS ` E.

Theorem 2.4. (Castelnuovo contraction theorem) Let X be a smooth surface, and let E Ď X
be a smooth curve, which is isomorphic to P1. Suppose E ¨ E “ ´1. Then, there is a
contraction morphism

X Ñ Y

which sends E to a point on Y , and Y is a smooth surface.
In other words, if you have a p´1q rational curve, then it arises from the blow-up of another

surface.

2.2. Strict transform of a curve.

Problem 2.5. Let X Ñ C2 be the blow-up at p0, 0q. Consider the line L1 given by x “ 0
and L2 be the line given by y “ 0. Find the strict transform (also called proper transform)
of the two lines. Do they intersect?

Problem 2.6. Let X Ñ C2 be the blow-up at p0, 0q. Consider the line L given by y “ 0
and C be the conic defined by y “ x2. Find the strict transform of the two curves. Do they
intersect? If so, what is the intersection multiplicity?

Problem 2.7. Let X Ñ C2 be the blow-up at p0, 0q. Find the strict transform C̃ of the
cuspidal curve C defined by y2 “ x3.
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(1) Is C̃ smooth?
(2) Find the intersection multiplicity of C̃ and E.

Problem 2.8. Let C1 and C2 be the two curves in Problem 1.11. We blow up the origin.
How many points do the strict transform C̃1 and C̃2 intersect on the exceptional divisor?
What are the intersection multiplicities?

2.3. Resolving a rational map.

Problem 2.9. (pencil of lines) Consider the rational map

f : P2 99K P1

rx : y : zs ÞÑ rx : ys

(1) Show that f is not defined at the point r0, 0, 1s.
(2) Let X be the blow-up of P2 at r0, 0, 1s, then show that f extends to a morphism

f̃ : X Ñ P1.
(3) Show that every fiber is a copy of P1.

Problem 2.10. (Cubic curve) Let f be the same rational map as above. Let C be the cubic
curve zy2 “ xpx ` 1qpx ´ 1q

(1) Show that C is a smooth curve. (What is its genus?)
(2) Show that the restriction of f to C defines a regular morphism f |C : C Ñ P1.
(3) What is the degree of this map? Where are the ramification points?

Problem 2.11. (Pencil of conics) Recall that through 5 general points on P2, there is a
unique conic.

(1) Use the results in Problem 1.3 to show that a conic passing through the four points
r1 : 0 : 0s, r0 : 1 : 0s, r0 : 0 : 1s, r1 : 1 : 1s have the equation

(3) Axy ` Byz ´ pA ` Bqxz “ 0

(2) We can parameterize the family by P1: Let C1 be the (singular) conic defined by
B “ 0, with equation fpx, y, zq “ xy ´ xz “ 0 and C2 be the conic defined by A “ 0,
with equation gpx, y, zq “ yz ´ xz “ 0. Then show any conic in the family (3) can
be written as

(4) Afpx, y, zq ` Bgpx, y, zq “ 0, rA : Bs P P1.

(3) Show that then one parameter family (4) (we call a pencil) defines a rational map

ϕ : P2 99K P1

rx : y : zs ÞÑ rfpx, y, zq : gpx, y, zqs.

Find the domain of ϕ. Which points on P2 is the ϕ not defined?
(4) Blow up P2 at the points where ϕ is not defined and call the new space X. Show that

ϕ extends to a regular morphism on X.

Problem 2.12. (Net of conics) (cf. Beauville, p.18, Problem 3.)
(1) Show that a conic passing through the three points r1 : 0 : 0s, r0 : 1 : 0s, r0 : 0 : 1s

have the equation

Axy ` Byz ` Cxz “ 0, with rA : B : Cs P P2
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(2) Show that the 2-dimensional family of conics above defines a rational map

ϕ : P2 99K P2

(5) rx : y : zs ÞÑ ryz : xz : xys

(3) Find the domain of ϕ. Which points on P2 is the ϕ not defined?
(4) Blow up P2 at the points where ϕ is not defined and call the new space X. Show that

ϕ extends to a regular morphism on X.

2.4. Blow Down.

Problem 2.13. (Hartshorne, Chapter 5, problem 5.2) Let Y – P1 be a curve in a smooth
algebraic surface X, and Y ¨ Y ă 0. Show that there is a contraction X Ñ X 1 which sends
Y to a point.
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3. Problem Set 3: Del Pezzo Surfaces, Due Aug 1st

In this section, we study a class of rational surfaces, called del Pezzo surfaces. They are
blowing up at up to 8 points in the general position.

Let π : X Ñ P2 be blow up at points p1, . . . , pk. The canonical bundle formula (cf.
Theorem 2.3) implies KX “ π˚KP2 ` E1 ` ¨ ¨ ¨ ` Ed “ π˚Op´3q ` E1 ` ¨ ¨ ¨ ` Ed, where Ei

is the exceptional divisor over pi, then ´KX , called the anti-canonical class, is ample when
k ď 8 and p1, . . . , pk are in general positions (3 points do not on a line, 6 points do not lie on
a conic.) h0pX,´KXq is the space of cubics on P2 vanishing at pi, so it is 10´k dimensional
(cf. problem 3.5), and the linear system | ´ KX | defines a morphism

ϕ : X Ñ P9´k.

This is an embedding when k ď 6.
X is called the del Pezzo surface of degree d “ 9 ´ k. When d ě 3, this is an embedding.

Example 3.1. When k “ 6. It is blowup 6 general points on P2, it is a cubic surface (d “ 3).

Definition 3.2. A line L on a del Pezzo surface is an irreducible curve such that L¨p´KXq “

1 and L2 “ ´1.

It is well known that

Theorem 3.3. A cubic surface has 27 lines.

Reference: Beauville, section 4; Harthshorne, Chapter 5, section 4.

3.1. Cubics on P2.

Problem 3.4. Show that the space of cubic polynomials on P2, i.e., H0pP2,Op3qq is 10
dimensional.

Problem 3.5. Let p1, . . . , pk be k general points on P2. Show that the space of cubic poly-
nomials on P2 vanishing at p1, . . . , pk form a 10 ´ k dimensional subspace.

3.2. Blow up one or two points.

Problem 3.6. Let X be blowup at one point on P2 (cf. Problem 2.9). Show that PicpXq – Z2

and spanned by two curves E and F , where E is the exceptional curve, F is the strict
transform of a line through the blowup point, and the intersection pairing is E ¨ E “ ´1,
E ¨ F “ 1 and F ¨ F “ 0.

Problem 3.7. Continued from the previous problem. Let L be a line which does not pass
through the blowup point. Express L “ aE ` bF in PicpXq, what is a and b? Find the
intersection paring of PicpXq in terms of the new basis L and F .

Problem 3.8. Let X be the blowup at two points on P2. Find all lines on X. Find a basis
of PicpXq and the intersection pairing.

3.3. Geometry of blowing up two points Blp1,p2P2.

Problem 3.9. Show that blow up P1 ˆ P1 at one point is isomorphic to blow up P2 at two
points through the following steps:

(1) By change of coordinate we can assume we blow up P2 at p “ r0 : 1 : 0s and q “ r0 :
0 : 1s. Denote X the blow-up surface.
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(2) Show the proper transform L̃ of the the line L through the two points has self-
intersection ´1.

(3) Use Castelnuovo’s theorem to show L̃ can be contracted, i.e., there is a birational
morphsim f : X Ñ Y such that fpL̃q is a point.

(4) It reduces to show that Y is P1 ˆP1, or quadric surface. Recall that (cf. Problem 1.6)
quadric surface has two rulings (two lines in the same ruling are disjoint, and two
lines in different rulings intersect at one point). So, we need to construct two rulings
on Y . They should come from two families of lines on P2. What are they? Try to
think and figure it out by yourself without reading below.

(5) Let’s consider the rational map

ϕ : P2 99K P1
ˆ P1

rx : y : zs ÞÑ rx : zs ˆ rx : ys

Which point is this map not defined? Show that ϕ extends to a regular morphism ϕ̃
on X and is constant on L̃.

(6) So ϕ̃ descends to a morphism ϕ̄ : Y Ñ P1 ˆ P1. Show this is an isomorphism.

3.4. blow up 3 points and Cremona transformations.

Problem 3.10. (Cremona transformations, cf. Hartshorne, p.397. Example 4.2.3)
(1) Show that the rational map (5)

ϕ : P2 99K P2

rx : y : zs ÞÑ ryz : xz : xys

is a birational involution. In other words, shows that the composition (5)

ϕ ˝ ϕ : P2 99K P2

agrees with the identity map.
(2) Recall that in Problem 2.12 (4), we showed ϕ extends to a regular morphism ϕ̃ on the

blow up X of P2 at three points. Describe which curves do ϕ̃ blow down.
(3) Show that ϕ extends to an isomorphism on X: In other words, show that there is a

following commutative diagram

X X

P2 P2

π

Φ

π

ϕ

Φ agrees with ϕ and is an isomorphism between X.
(4) Φ is an involution (regular selfmap whose composition is identity) on X. Describe

this map.

Problem 3.11. Let X be the blow-up of P2 at three points. Suppose the three points are not
on the same line.

(1) Show that we can assume the three points to be at r1 : 0 : 0s, r0 : 1 : 0s and r0 : 0 : 1s.
(2) Find all (-1) lines on X.
(3) Find PicpXq

(4) Let H “ ´KX “ 3π˚L ´ E1 ´ E2 ´ E3 be the hyperplane class, find a basis of HK in
PicpXq. Show HK is positive definite.
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Problem 3.12. Show that the anticanonical divisor ´KX of blowup of three points of P2

lying on a line is not ample by finding a curve C on X such that ´KX ¨ C ď 0.

3.5. Blow up more points.

Problem 3.13. Let X be the blow-up of P2 at four points. Suppose the three points are not
on the same line.

(1) Show that any such X arises from a pencil of conics on P2 (cf. Problem 2.11).
(2) Show that we can assume the three points to be at r1 : 0 : 0s, r0 : 1 : 0s, r0 : 0 : 1s,

and r1 : 1 : 1s.
(3) Find all (-1) lines on X.
(4) Find PicpXq

(5) Let H “ ´KX “ 3π˚L ´ E1 ´ E2 ´ E3 ´ E4 be the hyperplane class, find a basis of
HK in PicpXq. Show HK is positive definite.

Problem 3.14. (Hartshorne Chapter 5, Problem 4.13.)
(1) Show that blowup of 5 general points on P2 has 16 lines.
(2) It is a del Pezzo surface of degree 4. Show that it is the complete intersection Qq XQ2

of two quadric hypersurfaces in P4.
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4. Problem Set 4: ADE singularities, Due Aug 15

The reference for ADE singularities (or Du Val singularities) is Miles Reid’s note:
https://homepages.warwick.ac.uk/~masda/surf/more/DuVal.pdf

Theorem 4.1. (Projection formula) Let π : X Ñ Y be a proper map between projective
algebraic surfaces. Let C be a curve on Y and D be a curve on X. Then

(6) π˚C ¨ D “ C ¨ π˚D.

Here π˚ is the pullback of a divisor (cf. Theorem 2.3). π˚ : DivpXq Ñ DivpY q is the
pushforward, defined by π˚D “ d ¨ πpDq if both D and πpDq are divisors and D Ñ πpDq is
d-to-1, otherwise, define π˚pDq “ 0.

Note in Theorem 4.1, the surfaces do not need to be smooth, in particular, if π is the
resolution of singularities, then one can use (6) to define intersection numbers of two curves
on a singular surface.

4.1. Resolution of ADE singularities.

Problem 4.2. (A2 singularity) Resolve the singularity of the equation x2 ` y2 ` z3 “ 0.

In the lecture, we saw two equations for D4 singularities:
x2

` y3 ` z3 “ 0

x2
` y2z ` z3 “ 0

Problem 4.3. Show the two equations are analytically equivalent. (Hint: you can view the
surface as the double cover of C2 defined by y3 ` z3 “ 0 or y2z ` z3 “ 0. Find the zero loci
of two affine curves.)

Problem 4.4. (Reid, Exercise 2) Do the resolution for x2 ` y3 ` z3 “ 0. (Hint: This is a
simple exercise in not missing a singularity “at infinity”, which will happen if you only take
the obvious coordinate piece of the blowup.) Compare with the resolution did by Mert for the
other equation.

4.2. Quotient singularity.

Problem 4.5. (quotient singularity) Consider the Z2 group action on the affine plane τ :
C2 Ñ C2, px, yq ÞÑ p´x,´yq.

(1) Show that the invariant subring Crx, ysZ2 of Crx, ys is generated by u2, uv, and v2.
(2) Let X “ SpecpCrx, ysZ2q. Let ϕ : A2 Ñ X be the quotient defined by x “ u2, y “

uv, z “ v2. Show that X has equation xz “ y2, and has an A1 isngularity.

Problem 4.6. Show that the action τ extends to the blowup τ̃ : Blp0,0qA2 Ñ Blp0,0qA2. What
the action does on the exceptional divisor?

Problem 4.7. (Reid, Exercise 1) Show that there is a commutative diagram

Blp0,0qA2 X̃

A2 X

σ

ϕ̃

σ1

ϕ

where
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‚ σ is the blowup map, ϕ is the Z2 quotient as before
‚ σ1 is the minimal resolution of A1 singularity, with exceptional curve E
‚ ϕ̃ is branched double cover of X̃ along E.

Problem 4.8. Show that E ¨ E “ ´2 using projection formula for ϕ̃.

4.3. Projection formula. Let X be an algebraic surface an isolated singularity of ADE
type. Let π : X̃ Ñ X be the minimal resolution. Let E be the exceptional divisor (so
E “ YEi is the union of rational curves as the Dynkin diagram). Recall that in the lecture,
we showed that E ¨ E “ ´2 using adjunction formula and the fact that π is crepant.

Problem 4.9. Show that each irreducible component Ei has self-intersection ´2 using pro-
jection formula (6).
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